conformal_component/parameters.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
//! Code related to the _parameters_ of a processor.
//!
//! A processor has a number of _parameters_ that can be changed over time.
//!
//! The parameters state is managed by Conformal, with changes ultimately coming
//! from either the UI or the hosting application.
//! The parameters form the "logical interface" of the processor.
//!
//! Each parameter is one of the following types:
//!
//! - Numeric: A numeric value that can vary within a range of possible values.
//! - Enum: An value that can take one of a discrete set of named values.
//! - Switch: A value that can be either on or off.
//!
//! Note that future versions may add more types of parameters!
//!
//! Components tell Conformal about which parameters exist in their [`crate::Component::parameter_infos`] method.
//!
//! Conformal will then provide the current state to the processor during processing,
//! either [`crate::synth::Synth::process`] or [`crate::effect::Effect::process`].
//!
//! Note that conformal may also change parameters outside of processing and call
//! the [`crate::synth::Synth::handle_events`] or
//! [`crate::effect::Effect::handle_parameters`] methods, Components can update any
//! internal state in these methods.
use std::{
ops::{Range, RangeBounds, RangeInclusive},
string::ToString,
};
mod utils;
pub use utils::*;
#[cfg(test)]
mod tests;
macro_rules! info_enum_doc {
() => {
"Information specific to an enum parameter."
};
}
macro_rules! info_enum_default_doc {
() => {
"Index of the default value.
Note that this _must_ be less than the length of `values`."
};
}
macro_rules! info_enum_values_doc {
() => {
"A list of possible values for the parameter.
Note that values _must_ contain at least 2 elements."
};
}
macro_rules! info_numeric_doc {
() => {
"Information specific to a numeric parameter."
};
}
macro_rules! info_numeric_default_doc {
() => {
"The default value of the parameter.
This value _must_ be within the `valid_range`."
};
}
macro_rules! info_numeric_valid_range_doc {
() => {
"The valid range of the parameter."
};
}
macro_rules! info_numeric_units_doc {
() => {
"The units of the parameter.
Here an empty string indicates unitless values, while a non-empty string
indicates the logical units of a parmater, e.g., \"hz\""
};
}
macro_rules! info_switch_doc {
() => {
"Information specific to a switch parameter."
};
}
macro_rules! info_switch_default_doc {
() => {
"The default value of the parameter."
};
}
/// Contains information specific to a certain type of parameter.
///
/// This is a non-owning reference type, pointing to data with lifetime `'a`.
///
/// Here the `S` represents the type of strings, this generally will be
/// either `&'a str` or `String`.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{TypeSpecificInfoRef};
/// let enum_info = TypeSpecificInfoRef::Enum {
/// default: 0,
/// values: &["A", "B", "C"],
/// };
///
/// let numeric_info: TypeSpecificInfoRef<'static, &'static str> = TypeSpecificInfoRef::Numeric {
/// default: 0.0,
/// valid_range: 0.0..=1.0,
/// units: None,
/// };
///
/// let switch_info: TypeSpecificInfoRef<'static, &'static str> = TypeSpecificInfoRef::Switch {
/// default: false,
/// };
/// ```
#[derive(Debug, Clone, PartialEq)]
pub enum TypeSpecificInfoRef<'a, S> {
#[doc = info_enum_doc!()]
Enum {
#[doc = info_enum_default_doc!()]
default: u32,
#[doc = info_enum_values_doc!()]
values: &'a [S],
},
#[doc = info_numeric_doc!()]
Numeric {
#[doc = info_numeric_default_doc!()]
default: f32,
#[doc = info_numeric_valid_range_doc!()]
valid_range: RangeInclusive<f32>,
#[doc = info_numeric_units_doc!()]
units: Option<&'a str>,
},
#[doc = info_switch_doc!()]
Switch {
#[doc = info_switch_default_doc!()]
default: bool,
},
}
/// Contains information specific to a certain type of parameter.
///
/// This is an owning version of [`TypeSpecificInfoRef`].
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{TypeSpecificInfo};
/// let enum_info = TypeSpecificInfo::Enum {
/// default: 0,
/// values: vec!["A".to_string(), "B".to_string(), "C".to_string()],
/// };
/// let numeric_info = TypeSpecificInfo::Numeric {
/// default: 0.0,
/// valid_range: 0.0..=1.0,
/// units: None,
/// };
/// let switch_info = TypeSpecificInfo::Switch {
/// default: false,
/// };
/// ```
#[derive(Debug, Clone, PartialEq)]
pub enum TypeSpecificInfo {
#[doc = info_enum_doc!()]
Enum {
#[doc = info_enum_default_doc!()]
default: u32,
#[doc = info_enum_values_doc!()]
values: Vec<String>,
},
#[doc = info_numeric_doc!()]
Numeric {
#[doc = info_numeric_default_doc!()]
default: f32,
#[doc = info_numeric_valid_range_doc!()]
valid_range: std::ops::RangeInclusive<f32>,
#[doc = info_numeric_units_doc!()]
units: Option<String>,
},
#[doc = info_switch_doc!()]
Switch {
#[doc = info_switch_default_doc!()]
default: bool,
},
}
impl<'a, S: AsRef<str>> From<&'a TypeSpecificInfoRef<'a, S>> for TypeSpecificInfo {
fn from(v: &'a TypeSpecificInfoRef<'a, S>) -> Self {
match v {
TypeSpecificInfoRef::Enum { default, values } => {
let values: Vec<String> = values.iter().map(|s| s.as_ref().to_string()).collect();
assert!(values.len() < i32::MAX as usize);
TypeSpecificInfo::Enum {
default: *default,
values,
}
}
TypeSpecificInfoRef::Numeric {
default,
valid_range,
units,
} => TypeSpecificInfo::Numeric {
default: *default,
valid_range: valid_range.clone(),
units: (*units).map(ToString::to_string),
},
TypeSpecificInfoRef::Switch { default } => {
TypeSpecificInfo::Switch { default: *default }
}
}
}
}
impl<'a> From<&'a TypeSpecificInfo> for TypeSpecificInfoRef<'a, String> {
fn from(v: &'a TypeSpecificInfo) -> Self {
match v {
TypeSpecificInfo::Enum { default, values } => TypeSpecificInfoRef::Enum {
default: *default,
values: values.as_slice(),
},
TypeSpecificInfo::Numeric {
default,
valid_range,
units,
} => TypeSpecificInfoRef::Numeric {
default: *default,
valid_range: valid_range.clone(),
units: units.as_ref().map(String::as_str),
},
TypeSpecificInfo::Switch { default } => {
TypeSpecificInfoRef::Switch { default: *default }
}
}
}
}
/// Metadata about a parameter.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Flags {
/// Whether the parameter can be automated.
///
/// In some hosting applications, parameters can be _automated_,
/// that is, users are provided with a UI to program the parameter
/// to change over time. If this is `true` (the default), then
/// this parameter will appear in the automation UI. Otherwise,
/// it will not.
///
/// You may want to set a parameter to `false` here if it does not
/// sound good when it is change frequently, or if it is a parameter
/// that may be confusing to users if it appeared in an automation UI.
pub automatable: bool,
}
impl Default for Flags {
fn default() -> Self {
Flags { automatable: true }
}
}
/// Reserved unique id prefix for internal parameters. No component
/// should have any parameters with unique ids that start with this prefix.
pub const UNIQUE_ID_INTERNAL_PREFIX: &str = "_conformal_internal_";
macro_rules! unique_id_doc {
() => {
"The unique ID of the parameter.
As the name implies, each parameter's id must be unique within
the comonent's parameters.
Note that this ID will not be presented to the user, it is only
used to refer to the parameter in code.
The ID must not begin with the prefix `_conformal_internal`, as
this is reserved for use by the Conformal library itself."
};
}
macro_rules! title_doc {
() => {
"Human-readable title of the parameter."
};
}
macro_rules! short_title_doc {
() => {
"A short title of the parameter.
In some hosting applications, this may appear as an
abbreviated version of the title. If the title is already
short, it's okay to use the same value for `title` and `short_title`."
};
}
macro_rules! flags_doc {
() => {
"Metadata about the parameter"
};
}
macro_rules! type_specific_doc {
() => {
"Information specific to the type of parameter."
};
}
/// Information about a parameter.
///
/// This is a non-owning reference type.
///
/// If you are referencing static data, use [`StaticInfoRef`] below for simplicity.
///
/// This references data with lifetime `'a`.
/// Here the `S` represents the type of strings, this generally will be
/// either `&'a str` or `String`.
#[derive(Debug, Clone, PartialEq)]
pub struct InfoRef<'a, S> {
#[doc = unique_id_doc!()]
pub unique_id: &'a str,
#[doc = title_doc!()]
pub title: &'a str,
#[doc = short_title_doc!()]
pub short_title: &'a str,
#[doc = flags_doc!()]
pub flags: Flags,
#[doc = type_specific_doc!()]
pub type_specific: TypeSpecificInfoRef<'a, S>,
}
/// Owning version of [`InfoRef`].
#[derive(Debug, Clone, PartialEq)]
pub struct Info {
#[doc = unique_id_doc!()]
pub unique_id: String,
#[doc = title_doc!()]
pub title: String,
#[doc = short_title_doc!()]
pub short_title: String,
#[doc = flags_doc!()]
pub flags: Flags,
#[doc = type_specific_doc!()]
pub type_specific: TypeSpecificInfo,
}
impl<'a, S: AsRef<str>> From<&'a InfoRef<'a, S>> for Info {
fn from(v: &'a InfoRef<'a, S>) -> Self {
Info {
title: v.title.to_string(),
short_title: v.short_title.to_string(),
unique_id: v.unique_id.to_string(),
flags: v.flags.clone(),
type_specific: (&v.type_specific).into(),
}
}
}
impl<'a> From<&'a Info> for InfoRef<'a, String> {
fn from(v: &'a Info) -> Self {
InfoRef {
title: &v.title,
short_title: &v.short_title,
unique_id: &v.unique_id,
flags: v.flags.clone(),
type_specific: (&v.type_specific).into(),
}
}
}
/// [`InfoRef`] of static data
///
/// In many cases, the `InfoRef` will be a reference to static data,
/// in which case the type parameters can seem noisy. This type
/// alias is here for convenience!
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{TypeSpecificInfoRef, StaticInfoRef};
/// let enum_info = StaticInfoRef {
/// title: "Enum",
/// short_title: "Enum",
/// unique_id: "enum",
/// flags: Default::default(),
/// type_specific: TypeSpecificInfoRef::Enum {
/// default: 0,
/// values: &["A", "B", "C"],
/// },
/// };
/// let numeric_info = StaticInfoRef {
/// title: "Numeric",
/// short_title: "Num",
/// unique_id: "numeric",
/// flags: Default::default(),
/// type_specific: TypeSpecificInfoRef::Numeric {
/// default: 0.0,
/// valid_range: 0.0..=1.0,
/// units: None,
/// },
/// };
/// let switch_info = StaticInfoRef {
/// title: "Switch",
/// short_title: "Switch",
/// unique_id: "switch",
/// flags: Default::default(),
/// type_specific: TypeSpecificInfoRef::Switch {
/// default: false,
/// },
/// };
/// ```
pub type StaticInfoRef = InfoRef<'static, &'static str>;
/// Converts a slice of [`InfoRef`]s to a vector of [`Info`]s.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{StaticInfoRef, TypeSpecificInfoRef, Info, to_infos};
/// let infos: Vec<Info> = to_infos(&[
/// StaticInfoRef {
/// title: "Switch",
/// short_title: "Switch",
/// unique_id: "switch",
/// flags: Default::default(),
/// type_specific: TypeSpecificInfoRef::Switch {
/// default: false,
/// },
/// },
/// ]);
/// ```
pub fn to_infos(v: &[InfoRef<'_, &'_ str>]) -> Vec<Info> {
v.iter().map(Into::into).collect()
}
/// A numeric hash of a parameter's ID.
///
/// In contexts where performance is critical, we refer to parameters
/// by a numeric hash of their `unique_id`.
#[derive(Eq, Hash, PartialEq, Clone, Copy, Debug)]
pub struct IdHash {
internal_hash: u32,
}
#[doc(hidden)]
#[must_use]
pub fn id_hash_from_internal_hash(internal_hash: u32) -> IdHash {
IdHash {
internal_hash: internal_hash & 0x7fff_ffff,
}
}
impl IdHash {
#[doc(hidden)]
#[must_use]
pub fn internal_hash(&self) -> u32 {
self.internal_hash
}
}
/// Creates a hash from a unique ID.
///
/// This converts a parameter's `unique_id` into an [`IdHash`].
///
/// # Examples
///
/// ```
/// use conformal_component::parameters::hash_id;
/// let hash = hash_id("my_parameter");
/// ```
#[must_use]
pub fn hash_id(unique_id: &str) -> IdHash {
id_hash_from_internal_hash(fxhash::hash32(unique_id) & 0x7fff_ffff)
}
/// A value of a parameter used in performance-critical ocntexts.
///
/// This is used when performance is critical and we don't want to
/// refer to enums by their string values.
#[derive(Debug, Clone, PartialEq, Copy)]
pub enum InternalValue {
/// A numeric value.
Numeric(f32),
/// The _index_ of an enum value.
///
/// This refers to the index of the current value in the `values`
/// array of the parameter.
Enum(u32),
/// A switch value.
Switch(bool),
}
/// A value of a parameter
///
/// Outside of performance-critical contexts, we use this to refer
/// to parameter values.
#[derive(Debug, Clone, PartialEq)]
pub enum Value {
/// A numeric value.
Numeric(f32),
/// An enum value.
Enum(String),
/// A switch value.
Switch(bool),
}
impl From<f32> for Value {
fn from(v: f32) -> Self {
Value::Numeric(v)
}
}
impl From<String> for Value {
fn from(v: String) -> Self {
Value::Enum(v)
}
}
impl From<bool> for Value {
fn from(v: bool) -> Self {
Value::Switch(v)
}
}
/// Represents a snapshot of all valid parameters at a given point in time.
///
/// We use this trait to provide information about parameters when we are
/// _not_ processing a buffer (for that, we use [`BufferStates`]).
///
/// This is passed into [`crate::synth::Synth::handle_events`] and
/// [`crate::effect::Effect::handle_parameters`].
///
/// For convenience, we provide [`States::get_numeric`], [`States::get_enum`],
/// and [`States::get_switch`] functions, which return the value of the parameter
/// if it is of the correct type, or `None` otherwise.
/// Note that all parmeter types re-use the same `ID` space, so only one of the
/// specialized `get` methods will return a value for a given `ParameterID`.
///
/// Note that in general, the Conformal wrapper will implement this trait
/// for you, but we provide a simple implementation called [`StatesMap`]
/// that's appropriate to use in tests or other cases where you need to
/// create this trait outside of a Conformal wrapper.
pub trait States {
/// Get the current value of a parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If there is no parameter with the given ID, this will return `None`.
fn get_by_hash(&self, id_hash: IdHash) -> Option<InternalValue>;
/// Get the current value of a parameter by it's unique ID.
///
/// If there is no parameter with the given ID, this will return `None`.
fn get(&self, unique_id: &str) -> Option<InternalValue> {
self.get_by_hash(hash_id(unique_id))
}
/// Get the current numeric value of a parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If the parameter is not present or is not numeric, this will return `None`.
fn numeric_by_hash(&self, id_hash: IdHash) -> Option<f32> {
match self.get_by_hash(id_hash) {
Some(InternalValue::Numeric(v)) => Some(v),
_ => None,
}
}
/// Get the current numeric value of a parameter by it's unique ID.
///
/// If the parameter is not present or is not numeric, this will return `None`.
fn get_numeric(&self, unique_id: &str) -> Option<f32> {
self.numeric_by_hash(hash_id(unique_id))
}
/// Get the current enum value of a parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If the parameter is not present or is not an enum, this will return `None`.
fn enum_by_hash(&self, id_hash: IdHash) -> Option<u32> {
match self.get_by_hash(id_hash) {
Some(InternalValue::Enum(v)) => Some(v),
_ => None,
}
}
/// Get the current enum value of a parameter by it's unique ID.
///
/// If the parameter is not present or is not an enum, this will return `None`.
fn get_enum(&self, unique_id: &str) -> Option<u32> {
self.enum_by_hash(hash_id(unique_id))
}
/// Get the current switch value of a parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If the parameter is not present or is not a switch, this will return `None`.
fn switch_by_hash(&self, id_hash: IdHash) -> Option<bool> {
match self.get_by_hash(id_hash) {
Some(InternalValue::Switch(v)) => Some(v),
_ => None,
}
}
/// Get the current switch value of a parameter by it's unique ID.
///
/// If the parameter is not present or is not a switch, this will return `None`.
fn get_switch(&self, unique_id: &str) -> Option<bool> {
self.switch_by_hash(hash_id(unique_id))
}
}
/// Represents a single point of a piecewise linear curve.
#[derive(Debug, Clone, PartialEq)]
pub struct PiecewiseLinearCurvePoint {
/// The number of samples from the start of the buffer this point occurs at.
pub sample_offset: usize,
/// The value of the curve at this point.
pub value: f32,
}
/// Represents a numeric value that changes over the course of the buffer.
///
/// We represent values changing over the course of the buffer as a piecewise
/// linear curve, where the curve moving linearly from point to point.
///
/// Note that the curve is _guaranteed_ to begin at 0, however it
/// may end before the end of the buffer - in this case, the value
/// remains constant until the end of the buffer.
///
/// Some invariants:
/// - There will always be at least one point
/// - The first point's `sample_offset` will be 0
/// - `sample_offset`s will be monotonically increasing and only one
/// point will appear for each `sample_offset`
/// - All point's `value` will be between the parameter's `min` and `max`
#[derive(Clone)]
pub struct PiecewiseLinearCurve<I> {
points: I,
buffer_size: usize,
}
trait ValueAndSampleOffset<V> {
fn value(&self) -> &V;
fn sample_offset(&self) -> usize;
}
impl ValueAndSampleOffset<f32> for PiecewiseLinearCurvePoint {
fn value(&self) -> &f32 {
&self.value
}
fn sample_offset(&self) -> usize {
self.sample_offset
}
}
fn check_curve_invariants<
V: PartialOrd + PartialEq + core::fmt::Debug,
P: ValueAndSampleOffset<V>,
I: Iterator<Item = P>,
>(
iter: I,
buffer_size: usize,
valid_range: impl RangeBounds<V>,
) -> bool {
let mut last_sample_offset = None;
for point in iter {
if point.sample_offset() >= buffer_size {
return false;
}
if let Some(last) = last_sample_offset {
if point.sample_offset() <= last {
return false;
}
} else if point.sample_offset() != 0 {
return false;
}
if !valid_range.contains(point.value()) {
return false;
}
last_sample_offset = Some(point.sample_offset());
}
last_sample_offset.is_some()
}
impl<I: IntoIterator<Item = PiecewiseLinearCurvePoint> + Clone> PiecewiseLinearCurve<I> {
/// Construct a new [`PiecewiseLinearCurve`] from an iterator of points.
///
/// This will check the invariants for the curve, and if any are invalid, this will
/// return `None`.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{PiecewiseLinearCurve, PiecewiseLinearCurvePoint};
/// assert!(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 0, value: 0.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 100, value: 1.0 }],
/// 128,
/// 0.0..=1.0,
/// ).is_some());
///
/// // Curves must include at least one point
/// assert!(PiecewiseLinearCurve::new(vec![], 128, 0.0..=1.0).is_none());
///
/// // Curves can't go outside the valid range.
/// assert!(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 0, value: 0.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 100, value: 2.0 }],
/// 128,
/// 0.0..=1.0,
/// ).is_none());
///
/// // The curve must not go past the end of the buffer
/// assert!(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 0, value: 0.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 128, value: 1.0 }],
/// 128,
/// 0.0..=1.0,
/// ).is_none());
///
/// // The first point must be at 0
/// assert!(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 50, value: 0.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 100, value: 1.0 }],
/// 128,
/// 0.0..=1.0,
/// ).is_none());
///
/// // Sample offsets must monotonically increase
/// assert!(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 0, value: 0.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 100, value: 1.0 },
/// PiecewiseLinearCurvePoint { sample_offset: 50, value: 0.5 }],
/// 128,
/// 0.0..=1.0,
/// ).is_none());
/// ```
pub fn new(points: I, buffer_size: usize, valid_range: RangeInclusive<f32>) -> Option<Self> {
if buffer_size == 0 {
return None;
}
if check_curve_invariants(points.clone().into_iter(), buffer_size, valid_range) {
Some(Self {
points,
buffer_size,
})
} else {
None
}
}
}
impl<I> PiecewiseLinearCurve<I> {
/// Get the size of the buffer this curve is defined over.
///
/// Note that the last point may occur _before_ the end of the buffer,
/// in which case the value remains constant from that point until the
/// end of the buffer.
pub fn buffer_size(&self) -> usize {
self.buffer_size
}
}
impl<I: IntoIterator<Item = PiecewiseLinearCurvePoint>> IntoIterator for PiecewiseLinearCurve<I> {
type Item = PiecewiseLinearCurvePoint;
type IntoIter = I::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.points.into_iter()
}
}
/// Represents a value at a specific point in time in a buffer.
#[derive(Debug, Clone, PartialEq)]
pub struct TimedValue<V> {
/// The number of samples from the start of the buffer.
pub sample_offset: usize,
/// The value at this point in time.
pub value: V,
}
impl<V> ValueAndSampleOffset<V> for TimedValue<V> {
fn value(&self) -> &V {
&self.value
}
fn sample_offset(&self) -> usize {
self.sample_offset
}
}
/// Represents an enum value that changes over the course of a buffer.
///
/// Each point represents a change in value at a given sample offset -
/// the value remains constant until the next point (or the end of the buffer)
///
/// Some invariants:
/// - There will always be at least one point
/// - The first point's `sample_offset` will be 0
/// - `sample_offset`s will be monotonically increasing and only one
/// point will appear for each `sample_offset`
/// - All point's `value` will be valid
#[derive(Clone)]
pub struct TimedEnumValues<I> {
points: I,
buffer_size: usize,
}
impl<I: IntoIterator<Item = TimedValue<u32>> + Clone> TimedEnumValues<I> {
/// Construct a new [`TimedEnumValues`] from an iterator of points.
///
/// This will check the invariants for the curve, and if any are invalid, this will
/// return `None`.
///
/// Note that here we refer to the enum by the _index_ of the value,
/// that is, the index of the value in the `values` array of the parameter.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{TimedEnumValues, TimedValue};
/// assert!(TimedEnumValues::new(
/// vec![TimedValue { sample_offset: 0, value: 0 },
/// TimedValue { sample_offset: 100, value: 1 }],
/// 128,
/// 0..2,
/// ).is_some());
/// ```
pub fn new(points: I, buffer_size: usize, valid_range: Range<u32>) -> Option<Self> {
if buffer_size == 0 {
return None;
}
if check_curve_invariants(points.clone().into_iter(), buffer_size, valid_range) {
Some(Self {
points,
buffer_size,
})
} else {
None
}
}
}
impl<I> TimedEnumValues<I> {
/// Get the size of the buffer this curve is defined over.
pub fn buffer_size(&self) -> usize {
self.buffer_size
}
}
impl<I: IntoIterator<Item = TimedValue<u32>>> IntoIterator for TimedEnumValues<I> {
type Item = TimedValue<u32>;
type IntoIter = I::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.points.into_iter()
}
}
/// Represents a switched value that changes over the course of a buffer.
///
/// Each point represents a change in value at a given sample offset -
/// the value remains constant until the next point (or the end of the buffer)
///
/// Some invariants:
/// - There will always be at least one point
/// - The first point's `sample_offset` will be 0
/// - `sample_offset`s will be monotonically increasing and only one
/// point will appear for each `sample_offset`
#[derive(Clone)]
pub struct TimedSwitchValues<I> {
points: I,
buffer_size: usize,
}
impl<I: IntoIterator<Item = TimedValue<bool>> + Clone> TimedSwitchValues<I> {
/// Construct a new [`TimedSwitchValues`] from an iterator of points.
///
/// This will check the invariants for the curve, and if any are invalid, this will
/// return `None`.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{TimedSwitchValues, TimedValue};
/// assert!(TimedSwitchValues::new(
/// vec![TimedValue { sample_offset: 0, value: false },
/// TimedValue { sample_offset: 100, value: true }],
/// 128,
/// ).is_some());
/// ```
pub fn new(points: I, buffer_size: usize) -> Option<Self> {
if buffer_size == 0 {
return None;
}
if check_curve_invariants(points.clone().into_iter(), buffer_size, false..=true) {
Some(Self {
points,
buffer_size,
})
} else {
None
}
}
}
impl<I> TimedSwitchValues<I> {
/// Get the size of the buffer this curve is defined over.
pub fn buffer_size(&self) -> usize {
self.buffer_size
}
}
impl<I: IntoIterator<Item = TimedValue<bool>>> IntoIterator for TimedSwitchValues<I> {
type Item = TimedValue<bool>;
type IntoIter = I::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.points.into_iter()
}
}
/// Represents the state of a numeric value across a buffer
#[derive(Clone)]
pub enum NumericBufferState<I> {
/// The value is constant across the buffer.
Constant(f32),
/// The value changes over the course of the buffer, represented by a
/// [`PiecewiseLinearCurve`].
PiecewiseLinear(PiecewiseLinearCurve<I>),
}
impl<I: IntoIterator<Item = PiecewiseLinearCurvePoint>> NumericBufferState<I> {
/// Get the value of the parameter at the start of the buffer.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{NumericBufferState, PiecewiseLinearCurve, PiecewiseLinearCurvePoint};
/// assert_eq!(NumericBufferState::PiecewiseLinear(PiecewiseLinearCurve::new(
/// vec![PiecewiseLinearCurvePoint { sample_offset: 0, value: 0.5 },
/// PiecewiseLinearCurvePoint { sample_offset: 100, value: 1.0 }],
/// 128,
/// 0.0..=1.0,
/// ).unwrap()).value_at_start_of_buffer(), 0.5);
/// ```
#[allow(clippy::missing_panics_doc)] // Only panics when invariants are broken.
pub fn value_at_start_of_buffer(self) -> f32 {
match self {
NumericBufferState::Constant(v) => v,
NumericBufferState::PiecewiseLinear(v) => v.points.into_iter().next().unwrap().value,
}
}
}
/// Represents the state of an enum value across a buffer
///
/// Here we refer to the enum by the _index_ of the value,
/// that is, the index of the value in the `values` array of the parameter.
#[derive(Clone)]
pub enum EnumBufferState<I> {
/// The value is constant across the buffer.
Constant(u32),
/// The value changes over the course of the buffer, represented by a
/// [`TimedEnumValues`].
Varying(TimedEnumValues<I>),
}
impl<I: IntoIterator<Item = TimedValue<u32>>> EnumBufferState<I> {
/// Get the value of the parameter at the start of the buffer,
/// represented by the index of the value in the `values` array of the parameter.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{EnumBufferState, TimedEnumValues, TimedValue};
/// assert_eq!(EnumBufferState::Varying(TimedEnumValues::new(
/// vec![TimedValue { sample_offset: 0, value: 1 },
/// TimedValue { sample_offset: 100, value: 2 }],
/// 128,
/// 0..3
/// ).unwrap()).value_at_start_of_buffer(), 1);
/// ```
#[allow(clippy::missing_panics_doc)] // Only panics when invariants are broken.
pub fn value_at_start_of_buffer(self) -> u32 {
match self {
EnumBufferState::Constant(v) => v,
EnumBufferState::Varying(v) => v.points.into_iter().next().unwrap().value,
}
}
}
/// Represents the state of an switched value across a buffer
#[derive(Clone)]
pub enum SwitchBufferState<I> {
/// The value is constant across the buffer.
Constant(bool),
/// The value changes over the course of the buffer, represented by a
/// [`TimedSwitchValues`].
Varying(TimedSwitchValues<I>),
}
impl<I: IntoIterator<Item = TimedValue<bool>>> SwitchBufferState<I> {
/// Get the value of the parameter at the start of the buffer.
///
/// # Examples
///
/// ```
/// # use conformal_component::parameters::{SwitchBufferState, TimedSwitchValues, TimedValue};
/// assert_eq!(SwitchBufferState::Varying(TimedSwitchValues::new(
/// vec![TimedValue { sample_offset: 0, value: true },
/// TimedValue { sample_offset: 100, value: false }],
/// 128,
/// ).unwrap()).value_at_start_of_buffer(), true);
/// ```
#[allow(clippy::missing_panics_doc)] // Only panics when invariants are broken.
pub fn value_at_start_of_buffer(self) -> bool {
match self {
SwitchBufferState::Constant(v) => v,
SwitchBufferState::Varying(v) => v.points.into_iter().next().unwrap().value,
}
}
}
/// Represents the value of a parameter as it varies across a buffer.
pub enum BufferState<N, E, S> {
/// The value of a numeric parameter represented by a [`NumericBufferState`].
Numeric(NumericBufferState<N>),
/// The value of an enum parameter represented by a [`EnumBufferState`].
Enum(EnumBufferState<E>),
/// The value of a switch parameter represented by a [`SwitchBufferState`].
Switch(SwitchBufferState<S>),
}
/// Represents the state of several parameters across a buffer.
///
/// Each parameter is represented by a [`BufferState`], which represents
/// a value for that parameter at each sample of the buffer.
///
/// To easily process parameters from this struct, you can use the
/// [`crate::pzip`] macro, which converts a [`BufferStates`] into a per-sample
/// iterator containing the values of each parameter you want to look at.
///
/// For more low-level usages, you can deal directly with the underlying [`BufferState`]
/// objects, which might yield higher performance in some cases than the [`crate::pzip`] macro.
///
/// Most of the time, this trait will be provided by the Conformal framework.
/// However, we provide simple implementations for this trait for testing or
/// in other scenarios where you need to call process functions outside of
/// Conformal.
///
/// - [`ConstantBufferStates`] - A simple implementation where all parameters are constant.
/// - [`RampedStatesMap`] - A simple implementation where the parameter can be different at
/// the start and end of the buffer.
pub trait BufferStates {
/// Get the state of a parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If there is no parameter with the given ID, this will return `None`.
fn get_by_hash(
&self,
id_hash: IdHash,
) -> Option<
BufferState<
impl Iterator<Item = PiecewiseLinearCurvePoint> + Clone,
impl Iterator<Item = TimedValue<u32>> + Clone,
impl Iterator<Item = TimedValue<bool>> + Clone,
>,
>;
/// Get the state of a parameter by it's unique ID.
///
/// If there is no parameter with the given ID, this will return `None`.
fn get(
&self,
unique_id: &str,
) -> Option<
BufferState<
impl Iterator<Item = PiecewiseLinearCurvePoint> + Clone,
impl Iterator<Item = TimedValue<u32>> + Clone,
impl Iterator<Item = TimedValue<bool>> + Clone,
>,
> {
self.get_by_hash(hash_id(unique_id))
}
/// Get the state of a numeric parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If there is no parameter with the given ID, or the parameter is not numeric,
/// this will return `None`.
fn numeric_by_hash(
&self,
param_id: IdHash,
) -> Option<NumericBufferState<impl Iterator<Item = PiecewiseLinearCurvePoint> + Clone>> {
match self.get_by_hash(param_id) {
Some(BufferState::Numeric(v)) => Some(v),
_ => None,
}
}
/// Get the state of a numeric parameter by it's unique ID.
///
/// If there is no parameter with the given ID, or the parameter is not numeric,
/// this will return `None`.
fn get_numeric(
&self,
unique_id: &str,
) -> Option<NumericBufferState<impl Iterator<Item = PiecewiseLinearCurvePoint> + Clone>> {
self.numeric_by_hash(hash_id(unique_id))
}
/// Get the state of an enum parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If there is no parameter with the given ID, or the parameter is not an enum,
/// this will return `None`.
fn enum_by_hash(
&self,
param_id: IdHash,
) -> Option<EnumBufferState<impl Iterator<Item = TimedValue<u32>> + Clone>> {
match self.get_by_hash(param_id) {
Some(BufferState::Enum(v)) => Some(v),
_ => None,
}
}
/// Get the state of an enum parameter by it's unique ID.
///
/// If there is no parameter with the given ID, or the parameter is not an enum,
/// this will return `None`.
fn get_enum(
&self,
unique_id: &str,
) -> Option<EnumBufferState<impl Iterator<Item = TimedValue<u32>> + Clone>> {
self.enum_by_hash(hash_id(unique_id))
}
/// Get the state of a switch parameter by it's hashed unique ID.
///
/// You can get the hash of a unique ID using [`hash_id`].
///
/// If there is no parameter with the given ID, or the parameter is not a switch,
/// this will return `None`.
fn switch_by_hash(
&self,
param_id: IdHash,
) -> Option<SwitchBufferState<impl Iterator<Item = TimedValue<bool>> + Clone>> {
match self.get_by_hash(param_id) {
Some(BufferState::Switch(v)) => Some(v),
_ => None,
}
}
/// Get the state of a switch parameter by it's unique ID.
///
/// If there is no parameter with the given ID, or the parameter is not a switch,
/// this will return `None`.
fn get_switch(
&self,
unique_id: &str,
) -> Option<SwitchBufferState<impl Iterator<Item = TimedValue<bool>> + Clone>> {
self.switch_by_hash(hash_id(unique_id))
}
}